Single-Crystal Pentacene Valence-Band Dispersion and Its Temperature Dependence.

نویسندگان

  • Yasuo Nakayama
  • Yuta Mizuno
  • Masataka Hikasa
  • Masayuki Yamamoto
  • Masaharu Matsunami
  • Shinichiro Ideta
  • Kiyohisa Tanaka
  • Hisao Ishii
  • Nobuo Ueno
چکیده

The electronic structures of the highest occupied molecular orbital (HOMO) or the HOMO-derived valence bands dominate the transport nature of positive charge carriers (holes) in organic semiconductors. In the present study, the valence-band structures of single-crystal pentacene and the temperature dependence of their energy-momentum dispersion relations are successfully demonstrated using angle-resolved ultraviolet photoelectron spectroscopy (ARUPS). For the shallowest valence band, the intermolecular transfer integral and effective mass of the holes are evaluated as 43.1 meV and 3.43 times the electron rest mass, respectively, at room temperature along the crystallographic direction for which the widest energy dispersion is expected. The temperature dependence of the ARUPS results reveals that the transfer integral values (hole effective mass) are enhanced (reduced) by ∼20% on cooling the sample to 110 K.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for temperature-dependent electron band dispersion in pentacene.

Evidence for temperature-dependent electron band dispersion in a pentacene thin film polymorph on graphite is provided by angle- and energy-dependent ultraviolet photoelectron spectroscopy. The bands derived from the highest occupied molecular orbital exhibit dispersion of approximately 190 meV at room temperature, and approximately 240 meV at 120 K. Intermolecular electronic coupling in pentac...

متن کامل

Electronic properties of oligoacenes from first principles

We present the electronic band structures and dielectric tensors for a series of crystalline linear oligoacenes—i.e., naphthalene, anthracene, tetracene, and pentacene—calculated within the density functional framework. The band dispersions, the effective charge carrier masses, and the optical response are discussed as a function of the oligomer length compared to previously reported calculatio...

متن کامل

Design of Endlessly Single Mode Photonic Crystal Fibers with Desirable Properties using HC-EDA Algorithm

In this article, Hill Climbing (HC) and Estimation of Distribution Algorithm (EDA) are integrated to produce a hybrid intelligent algorithm for design of endlessly Single Mode Photonic Crystal Fibers (SMPCFs) structure with desired properties over the C communication band. In order to analyzing the fiber components, Finite Difference Frequency Domain (FDFD) solver is applied. In addition, a spe...

متن کامل

Design of Single Mode Photonic Crystal Fiber with Outstanding Characteristics of Confinement Loss and Chromatic Dispersion over S to L Communication Band

In this article, a novel structure of photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and ultra-low confinement loss is presented. By replacing the circular air-holes of two first rings with the elliptical air-holes, a fiber with outstanding features of chromatic dispersion and confinement loss is designed. The proposed structure is optimized for operating in a wide...

متن کامل

Assessment of basic physical and dosimetric parameters of synthetic single-crystal diamond detector and its use in Leksell Gamma Knife and CyberKnife small radiosurgical fields

Background: To determine the basic physical and dosimetric properties of a new synthetic single-crystal diamond detector and its application for relative small field dosimetry. Materials and Methods: The pre-irradiation dose required to stabilize detector response, dose rate dependence, photon and electron energy dependence, temperature dependence and angular dependence of MicroDiamond detector...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 8 6  شماره 

صفحات  -

تاریخ انتشار 2017